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. .. an approach to teaching based on what we know about learning
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June 19-23
July 10-14
July 10-14
July 24-28
July 31-August 4

Announcing

Columbia, MO
Washington, MO
Kansas City, MO
St. Louis, MO
Republic, MO
St. Louis, MO
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Professionals
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Project Construct, an approach to teaching that is
based on what we know about how children learn,
embraces teaching strategies and resources that are
consistent with validated theories of learning and

development.

Project Construct institutes provide opportunities for
teachers and administrators to invent practical
strategies that support children’s ways of thinking and
challenge them to construct new knowledge. Institutes
are designed to help individuals make sound
educational decisions as they implement a
constructivist approach. Sessions deal with a range of
issues that early childhood and elementary educators

Springficld, MO
Columbia, MO
St. Louis, MO
Kansas City, MO
Columbia, MO

face in the classroom every day.

#Please visit our web site for Fall 2000 Institutes.

for First-Grade Educators

July 10-14 St. Louis, MO
July 31-August4  Columbia, MO

for Elementary Educators

July 17-21 Springfield, MO
July 24-28 St. Louis, MO
August 7-11 Columbia, MO

For more information, contact

Project Construct National Center
27 South Tenth Street, Suite 202
Columbia, Missouri 65201
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A Letter from the President of the Association for Constructivist Teaching

Dear Members.

[ know you will find this issue of
The Constructivist both simulating
and challenging. Catherine Twomey
Fosnot has edited another outstanding
set of articles for our mem-
bership.

THE CONSTRUCTIVIST

A few months ago. on
October 22 and 23, 1999, we
“met in St. Louis™ at a world-
class fair that included
presentations, workshops, and
networking opportunities.
About 350 people from all
across the country attended to
share ideas and research on
various issues.

Our keynote speaker on
the 22nd was Karen Gallas, a
noted teacher researcher who
has authored several books
documenting her studies. They
include three books published by
Teachers College Press: The Lan-
guages of Learning: How
Children Tulk, Write, Dance, Draw,
and Sing Their Understanding of the
World; Talking Their Way into
Science: Hearing Children’s Ques-
tions and Theories, Responding with
Curricula; and Sometimes | Can Be
Anvthing: Power, Gender, and

Identity in a Primary Classroom.
John Bransford, who was the
keynote speaker on the 23rd, is
Centennial Professor of Psychology
and Education and codirector of the
Learning Technology Center at
/anderbilt University in Nashville,
Tennessee. He has authored several
books and articles and 1s an interna-
tionally renowned scholar in cogni-
tion and technology. He and his
colleagues at Vanderbilt have devel-

oped and tested innovative computer,
videodisc. CD-ROM. and internet
programs, including The Adventures
of Jasper Woodbury, a problem-
solving series in mathematics, the
Scientists in Action series, and The
Little Planet literacy series. They are
also working with school systems on
a Challenge Grant designed to im-
prove instruction through innovative
uses of technology. Bransford recently
cochaired the National Academy of
Science Committees that wrote How
People Learn: Brain, Mind, Experi-
ence, and School; and How People
Learn: Bridging Research and Prac-
tice. He was recently awarded the
Sullivan Prize at Vanderbilt for
outstanding research and has been
elected to the National Academy of
Education.

Breakout sessions at the confer-
ence addressed a broad array of
subjects. ages, and research. with
presenters from many states. Besides
addressing core content areas. session
lopics were as wide-ranging as
“Music across the Curriculum.”
“Constructivism and Children with
Learning/Behavior Disorders,™ The
Value of Cooperative and Competitive
Games in Early Education.” and “The
Littleton Tragedy: A Constructivist
Perspective.”

This year, the conference will be
held in Atlanta, Georgia, with tenta-
tive dates of October 19-20. Faculty
from Georgia State University will
cochair the conference, and we can
look forward to another round of
stimulating discourse on constructivist
issues, principles, and practices...as
well as a taste of legendary southern
hospitality. See you all there.

—Brenda Fyfe



A Letter from the Executive Editor of The Constructivist

Dear Readers.

It gives me great pleasure to
present this focus issue on mathemat-
ics education. Much of the reform in
mathematics education resulting {from
the NCTM standards has been de-
scribed as “constructivist-based
practice.” Unfortunately, this practice
has often been misunderstood to be a
host of pedagogical strategics such as
cooperative learning, the use of
manipulatives. and the posing of word
problems to children in order to elicit
their invented strategies. While these
strategies may sometimes be benefi-
cial, they are in no way sufficient to
ensure mathematical development.
nor do they necessarily connect to
constructivisim.

The first article in this issue, by
Betina Zolkower, addresses the role
of context in learning and helps us
understand better the difference
between boring school-type word
problems and truly problematic
situations. Zolkower argues, along
with the mathematician Hans
Freudenthal, that real mathematics
requires “mathematizing” one'’s
world—seeing, asking, and investi-
gating mathematical questions as a
way of making meaning.

The second article, by Judit
Kerekes and me, stems tfrom the same
perspective on the role of context but
explores specifically the topic of
beginning multiplication. We show
how children’s strategies change
when the context has built-in con-
straints, and we use this research to
delineate the important role of the
teacher in designing contexts to
ensure development.

Contexts are important for investi-
gation and inquiry, but mental math
mini-lessons are also critical in order
to hone computation strategies.
Shevell and DiBrienza’s article—the
third in this issue—describes the use
of “*strings™ in mini-lessons to
develop a repertoire of com-
putation strategies and to
ensure the development of
number sense.

Hopefully. readers will
[ind these three articles helpful
in distinguishing between a
practice that is truly based on
a cognitive, constructivisit
view of
learning and one that is
characterized by supertficial
pedagogical strategies.

Lastly, an issue would not
be complete without a call for manu-
scripts. If The Constructivist is to
reach its true potential as a reform
tool, we need many good articles from
professionals who are engaged in the
difficult work of translating theory
into practice. Articles should be
approximately ten pages in length and
written in a colloquial style, with
references cited according to APA
guidelines. We especially seek articles
that speak to practice, and we encour-
age you to submit illustrations (graph-
ics, photographs, etc.,with appropriate
written permissions) along with your
text. Please send manuscripts to
Catherine Twomey Fosnot, City
College of New York, NAC 3/217.
138th St. and Convent Ave., New
York, New York 10031.

—Catherine Twomey Fosnot
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Letters to the Editors

The editors of The Constructivist want your feed-
back! Please send all Letters to the Editors to Catherine
Twomey Fosnot, City College of New York, NAC 3/
217, 138th Street and Convent Avenue, New York, New
York 10031.

Turn to page 26 for other highlights from the 1999
ACT Conference in St. Louis...
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Bridging the Gap between School
Mathematics and Common Sense: A
Realistic Turn

Betina Zolkower

Traditional math
instruction, Zolkower
argues, excludes real life
and suspends common
sense. In this article, she
makes a case for
realistic contexts,
presenting both their
values and possible
sources.

athematics in the City

is an inservice project

that involves almost
200 elementary school teachers
working in five different school
districts in New York City, which
has one of the largest and most
diverse school systems in the
nation. Many of thesc teachers
work with a great number of
students from low socio-eco-
nomic backgrounds as well as
students who speak English as a
second language. For over four
years, while working in the midst
of overwhelming pressures and
constraints, Mathematics in the
City staff have helped teachers
reinvent mathematics and 1ts
didactics while bridging the gap
between school mathematics and
common sense.

Due to its collaboration with
the Freudenthal Institute at
Utrecht University in the Nether-
lands, the project has benefited
from the influence of realistic
mathematics education (RME), a
theory that has been developing
since the late 1960s around the
work of Hans Freudenthal.
Freudenthal (1973) defined

models that, over the centuries
and with the contribution of
different cultures, have come to
constitute mathematics as a field
of knowledge.

Following are some situations
we use in Mathematics in the
City as a starting point for
mathematizing.

“The windows look so womn

Figure 1. Windows: A photograph

mathematics as a human activity:
mathematizing reality, reflecting
upon this activity, and
mathematizing mathematics.
Mathematizing reality means
organizing it with the use of tools
such as objects, operations, and

out! Maybe they will want to put
new ones, so they first need to
know how many there are,”
commented David, a third grader,
in face of this fragment of mod-
ern urban life (see Figure 1). As
they figure this out, children’s
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strategies span all the way from
counting the windows (one by
one, by 5s, or by 15s) through
adding seven groups of 30 (and
an extra 15) or by grouping by
rows (adding five 45s) or group-
ing by columns (adding three
75s) to multiplying (15 x 15 or 15
squared, 45 x 5, or 75 x 3).
Teachers build on these strategies
by scaffolding a “math congress™
(Fosnot, 1989), in the course of
which they stress connections
among solutions and explore the
commutativity, associativity, and
distributivity of multiplication
within an array model.

books

NEW YORK CITY

STRAND

8LILES OFBOOKS

Come visit New York's
Largest Used Book Store
Over 2 million books on

8 miles of shelves

Strand Book Store
828 Broadway (at 12th St.)
Nevs York, N.Y. 10003-4805
Tel. 212-473-1452
Fax 212-473-2591
Open Mon-Sat: 9:30AM-9:30PM
Sun: 11AM-9:30PM
and

Strand Book Annex

is Now Open!
95 Fulton Street
Tel. 212-732-6070
Mon-Fri: 8:30AM-8:00PM
Sat-Sun: 11:00AM-8:00PM

Ask 10 receive our
FREE CATALOGS

Figure 2. Books: An advertisement
found in a New York City tabloid

Could there really be 2
million books in eight miles of
shelves (see Figure 2)7 We
presented this problem to the
inservice teachers who partici-
pated in the Mathematics in the
City Summer Institutes

n THE CONSTRUCTIVIST

(Zolkower, 1998). Some teachers
proceeded experimentally and
trom small to big—feet to
miles—with a starting point of 12
books per foot of shelf space:

not as the acquisition or appro-
priation of mathematics as a
ready-made knowledge field, but
as the process of reinventing
mathematics. As Freudenthal

books 12 24 60 60,000 2,400 96 960 62,400 63,360

feet | 2 5 5,000 200 8 &0 5,200 5.280 (1 mile)
books 64.000 128,000 256,000 512,000 only a bit more than
= half a million books
miles 1 2 4 8

Other teachers worked in a
reductio ad absurdum fashion and
from big to small—miles to
feet—taking as the starting point
the advertiser’s claim:

books 2 million 250,000

25,000

argues, mathematical objects and
procedures are truly appropriated
when children—in collaboration
with other children, and with the
leacher’s guidance—engage in

about 50

12500 6250 3125 .

s per

8 miles I mile (5.280 1)

So many books in such a
small space! Each book would
have to be 1/4 inch wide, which
only works for magazines,
journals, or children’s books. But
what if the books are stacked in
two layers. either on top of or
behind each other? As her calcu-
lations were leading her to
believe that 2 million books could
not fit in eight miles of shelves. a
teacher commented, ““We must be
doing something wrong.

I know one of the owners. She
wouldn’t lie about it.”

Reinventing
Mathematics

From the perspective of RME,
learning mathematics is defined

528 264 132 6!

shelf spuce

mathematizing situations akin to
those that historically gave rise to
those concepts and procedures. In
the classroom, the process of
mathematizing is governed by the
principle of guided reinvention,
that is, “striking a subtle balance
between the freedom of inventing
and the force of guiding”
(Freudenthal, 1991, p. 48).

Why reinvention? What the
learners invent is new to them,
yet it is, hopefully, well known to
their teachers. Teachers can
perform their guiding role only
when they know themselves and
they know ahead; that is, they
must be able to anticipate stu-
dents’ inventions as well as most
of their errors, confusions, and



misunderstandings. The skillful
teacher will manage investiga-
tions and conversations in such a
way as to help students move
slowly or make jumps—each at
his or her own pace—from their
invented, informal, often ineffi-
cient, and context-specific
strategies, towards more conven-
tional, formal, efficient, and
widely applicable strategies.

What follows are two ex-
amples from the algebra and the
fractions learning strands. The
first example is a story problem: I
went to the candy shop around
my corner with 1 in my pocket.
At this candy shop, which hap-
pens to be the smallest in the
world, they sell only four differ-
ent kinds of candies: packs of
gum for 25¢, lollipops for 15¢,
jawbreakers for 10¢, and Kisses
for 5¢. 1 left the store with no
money and exactly seven candies
in a brown bag. What could be in
my bag?

In a second-grade class,
children used numbers to indicate
how many candies of each kind
they had bought and how much
money they had spent so far.
They used symbols (e.g., draw-
ings or letters) to represent the
different kinds of candies, and
they used operations such as
adding and doubling to figure out
their totals (see Figure 3). To help
generate the need for symbolizing
within the classroom community,
the teacher may point to 60 + 25
+ 10+ 5 = 100 (see Figure 4) and
ask. “What do Janell and Eloise
mean by this? Could we rewrite
this number sentence so that

everybody would understand it?”
As for the total number of pos-
sible combinations, the road from
a trial-and-error approach that
allows students to find one or
more combinations of seven
candies for $1 without certainty
that these are all there could be, to
the more or less explicit use of

the exchange model—as Janell
and Eloise do, which is to start
with two lollipops, then three,
then four, and then six and, in
each case, spend the rest of the
money on other candies; or
exchange two kisses for one
Jawbreaker, three kisses for one
lollipop, five kisses for one pack

*%WB 50
af 20 ok
QU 10
\ Jaw
BYakeY

- — =

10k 5+%0+10=100

Fioure 3. Briele and Alexis

L RaekS of gum = 50
5 Jowb(eokeYs = 50
50+50 = 100

B,

% loligors=t 5e ale |
I Roek of 9%@ |
% jawbYaKeYs=30r —FLOO

F5e+ L 53 0-51.00

L poeks of gum= 50,,)5 -
%2 lollirogs = B0O¢ #.00
I lovabYeole (=]0r e

0. HeXShHeYy KWOSeSI0:
50+%0+10+10+ 100

& \ollirarS=90
I Jow BYeoke(=]O
90+10-100

t lolliRors=60

| Roekof SUm=.5
I Jol BYeoKeY-=]O
] HeXSHevKiSS=5 |
LO+L5+0+5=100 |

Lnd GRADE

Figure 4. Janell and Eloise
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of gum, and so on—may be a small piece, and a tiny piece” clear-cut situations such as this
described as mathematizing at (see Figure 7). Rachelle and one, students may object to
higher and higher levels. Myles proceed just like Brittany,  evenly fractioning the chocolate
[f children are to be guided to  but, after giving the children their  bars. “I"d bring another bar from
reinvent fractions, instruction two portions, each “half pese™ the supermarket,” proposes
cannot begin with fraction as a becomes a whole (“now a hole™)  Yudalitza. Inventing names for
ready-made object (e.g., the (see Figure 8). The teacher the six chocolate sharers. Brian
denominator tells us in how many comments, “So, it looks like suggests, “Nancy can give a piece
parts the whole is divided, and finally everybody got to eat a to Tommy.” In response to the
the numerator tells us how many  whole bar!” Rachelle replies, question of whether that would be
parts we take). Instead, following  “No, that can’t be. There isn’t fair. Brian says, *“Yes. because
Streefland (1991), fair sharing enough!” she’s sitting right next to him.” It
and fair distribution situations are Yet, as we all know, even in 1s up to the teacher to anticipate

introduced from the start. This
allows for the mental-object
fraction, in its interpretation as |
ratio, to emerge as a result of
fractioning the objects to be |
shared (e.g., chocolate bars,
pizzas, pancakes), examining the
fairness of the distributions, |
comparing different distributions,
and, eventually, finding formal |
names for “the tiny pieces™ and
the “small halves.”

The starting point may be a

situation where six children share  Fiue 5. Brittany

five chocolate bars (Bidwell,
1982). Following is the work of
third-grade students.

Anthony breaks three bars in
half and two bars in six parts.
Using arrows to deal the portions
to the six children at the table. he
writes, “each one gets one half
and two small pieces.” Whereas
Brittany divides three of the bars
in halves and the remaining two
in thirds with no further commen- _ :
tary (see Figure 5), Hannah ‘ T fi:f T
breaks every chocolate bar in six ' _U.\J JEEREEE
parts and concludes “five each” ; T —
(see Figure 6). Athena breaks the \ ‘ ) i oy
five chocolates so that. as she - - ~
explains, “each kid gets one half,  Fioure 6. Hannah

n THE CONSTRUCTIVIST




as well as make room for these

“misinterpretations” by making
explicit the assumptions regard-
ing the fair-sharing context.

Within the same fair-sharing
situation (i.e., children, tables,
chocolate bars), the teacher may
propose three new scenarios: (1)
a table where eight children share
five chocolate bars: (2) another
table where six children share
four bars: and (3) another one
where eight children share four
bars (see Figure 9). If at stake is
not what are the portions (de-
scribed in fractional terms) at
each table but, rather, at which of
the four tables do children get to
eat the most chocolate, most of
the comparing could be done
without actually doing the distri-
butions!

Now, five bars for six chil-
dren are certainly better than five
bars for eight children. All that is
Jeft to compare is four bars for six
children versus five bars for eight
children. Distributing “‘a la
Brittany” (halving) will lead,
respectively, to 1/2 + 1/6 and 1/2
+ 1/8; since 1/6 is bigger than 1/8,
the first table is better off than the
second one. Alternatively, one
may argue that in the second
situation, there are two more
children than in the first, but only
one more bar: therefore, the
portions will be smaller.

Realistic Contexts

For mathematizing to occur,
instruction ought to start not from
ready-made formal systems,
algorithms, structural games, or
embodiments of mathematics in

Figure 8. Rachelle and Myles

5 bars

6 children

4 bars half a bar
foreach

& children

4 bars

6 children

5 bars

8 children

fewer bars, same number of
kidls; thus, 5 for 6 is better

than 4 for 6

more than half for each;
thus 5 for 8 is better

than 4 for 8

Figure 9. Sharing Chocolates
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concrete materials, but from
realistic contexts—fragments of
reality that beg to be modeled by
mathematical means. Unfortu-
nately. the expression “realistic
contexts” is often misread as
“real-life” situations. In Dutch,
zich realiseren means “'to realize
in the sense of to picture or
imagine something concretely™
(van den Heuvel-Panhuizen,
1996). A realistic context may be
a fictional one, as long as it is one
that children may experience as
real, that is, a situation within
which they may think and act.

Consider, for example, the
following situation, hereby
presented to a group of third
graders.

The Polar Bear: How many
children together weigh as much
as a 1,000-pound polar bear (van

i |
7 |
.,_,..““'\ W. £ |

1,OOO reWUnds

scratch paper

Figure 10, Latesha
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den Heuvel-Panhuizen, 1996)?
Latesha starts with her own
weight (T weigh 557) and then
adds up the weight of other
children in the class (sce Figure
10). Luisa also uses the weight of
her classmates, but she rounds
these numbers up or down to
make them “nicer to add.” The
first seven children together
weigh 360 pounds. Another
group of eight children contrib-
utes 410 pounds. The weight of
four more kids is added to 770
pounds to reach the polar bear’s
weight. Luisa finds a way to
reach exactly 1,000 pounds with
19 children (see Figure 11). Other
students find out how many
weights (within a range of 50 to
90 pounds) add up to 500, and
then double that amount. Finally,
others seem ready to work with
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the weight of an average child
(e.g., Jeremiah's 50 x 20 =
1,000. It’s 20 kids.”). Nicole also
starts with her own weight (68
pounds) (see Figure 12). After
two trials, first with 34 children
(“too much™) and then with 14
children (*‘not enough™), she finds
that 15 children together, ten of
them weighing 67 pounds and the
other five weighing 66 pounds,
balance a 1,000-pound polar bear.
And, as to Jeremiah’s solution,
Nicole objects, saying, “Kids
don’t all weigh the same.”

Here is another imaginable
situation:

A Human Pyramid: How
many children are needed to
make a pyramid as high as a 110-
meter tower (see Figure 13)?
(Janssen, van der Geest, &
Raeven, 1985)

P

|
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Figure 11. Luisa

Figure 12. Nicole




Sixth-grader Cheng immedi-
ately puts himself in the situation:
“My hlelight is 1.4 meter, but
next person gonna stand on my
shoulder. So it will be | meter of
me.” (See Figure 14.) He recalls
an analogous situation where a
four-cubes-high pyramid had four
cubes on the bottom row. “I know
the build[ing] is 110, so I need
110 people first. . .. The s[e]cond
one [row] is 109 [people]. . .. So,
then just keep on and on.” Pairing
up the extremes of the series 1 to
110, he makes the following list
of sums: 110+ 1=111,109+2 =

11,108 + 3=111. “[I] keep on
and on.” He knows that there will
be 55 sums because “110 + by 2
=55...add all the fifty-five 111
together: 111 x 55 =6,105. So,
there will be 6,105 of me! Wow,
that is alots ‘me’!”

For contexts to serve not
merely as applications of already-
taught procedures but as starting
points for mathematizing, they
need to be more than camou-
tlaged bare problems, as in most
of the contrived word problems
that characterize traditional
mathematics instruction (Lave,
1992). As Freudenthal reminds
us, “Context is not merely a
garment clothing nude mathemat-
ics, and mathematizing is quite
another thing than simply unbut-
toning this garment” (1991, p.
75). Research evidence continues
to grow about the extent to which
instructional programs that rely
solely on stereotyped word
problems prevent students from
developing the ability to put
mathematics to use in modeling

dd Hd Wm A

Figure /3. Human Pyramid
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real-life situations (De Corte &

Verschaffel, 1989; Greer, 1993

Verschaffel & De Corte, 1997).

Verschaffel and his colleagues

have extensively documented the

extent to which, after many years
of apprenticeship in school
mathematics, students become
skillful at playing the word-
problem language game. Among
the implicit rules of this game is
the leaving out of all assumptions
about real life and the suspension
of common sense, including,
most conspicuously. money sense
and the ability for mental compu-
tation.'

Realistic contexts allow for
posing meaningful questions,
formulating truly open-ended
problems, and pursuing worth-
while investigations. Yet, where
do these realistic contexts come
from? We may find them in
familiar school and everyday-life
artifacts and situations, such as
the following:
 open and closed necklaces

with a 5- or a 10-structure for
counting and moving beyond
counting (More black beads or
more white beads?)
(Gravemeijer, 1994);

* using the rekenrek, an arith-
metic rack modeled after a
double-decker bus, with a
5-,10-, 20-structure for
addition and subtraction up to
20 (Gravemeijer, 1994);

» exploring the city-bus context,
where addition and subtraction
are modeled, respectively, by
people getting on and off the
buses (van den Brink, 1984;
van Galen, Gravemeijer,

THE CONSTRUCTIVIST

The argument for realistic contexts should not

be forwarded solely in terms of motivation. . ..

Neither should [it] . . . be forwarded only from

the point of view of applications.

Kraemer, Meeuwisse, &
Vermeulen, 1995);

reading a book (How many
more pages until we finish it?);
figuring out how much milk
and cookies are needed for
snack time;

planning a school trip (How
many buses are needed? How
many tables at the picnic
resort? How many subs should
be ordered?);

estimating the seating capacity
of the school auditorium (Is
there enough room for 700
people to sit?):

paying for the bus fare (How
many different coin combina-
tions are possible?);

the number-line model as a
time line (How old will you be
in the year 20127 How many
minutes to the year 20017);
figuring out whether it is
possible for the entire world
population to join a birthday
celebration in Rhode Island:
calculating whether or not 1
million sheets of paper (8 1/2
by 11 inches) are sufficient
for covering the entire surface
of Central Park:

estimating the cost in raw
materials of making a T-shirt
out of paper clips (a box of 350)

paper clips costs $1.49);

* building a small-scale model
of the classroom;

* cutting as many bookmarks as
possible out of an expensive
rectangular piece of paper:

and so on.

In the Netherlands. realistic
contexts are designed by teams of
curriculum developers and
teachers in developmental re-
search cycles where these con-
texts are first tried out in teaching
experiments and then modified in
light of the outcome of such
experiments (Freudenthal, 1991;
Gravemeijer, 1994). In develop-
ing these contexts, designers have
in mind not only the theoretical
learning line of the strand in
question—concepts, models. and
strategies—but also the actual
learning trajectories of the stu-
dents for which the materials are
designed. In Mathematics in the
City, we have been working more
informally. designing our own
contexts generally as part of the
teacher/co-teacher joint lesson
planning. At the same time, we
have adapted materials from
Rekenen and Wiskunde (van
Galen, Gravemeijer, Kraemer,
Meeuwisse, & Vermeulen, 1995)
and from Mathematics in Con-



text: A Connected Curriculum for
Grades 5-8 (National Center for

Research in Mathematics Educa-
tion and the Freudenthal Institute,
1988).

Conclusion

The argument for realistic
contexts should not be forwarded
solely in terms of motivation.
Looking at some of the (old and
new) curriculum packages, one
would think that mathematics
may be found only in bake and
t-shirt sales, jumping-jack experi-
ments, school calendars, card and
board games, computer
microworlds, baseball scores, and
M & Ms. If schooling has an
educational role to perform, itis
fundamentally in the sense of
stimulating in children an interest
for what is not familiar, what is
foreign. what is far away: a
curiosity about the world 1n all its
vastness and complexity; and the
encouragement (o0 imaging it as
other than what it is. Neither
should the argument for realistic
contexts be forwarded only from
the point of view of applications.
One does not learn to mathem-
atize by first encountering math-
ematics in camouflaged situations
and then applying it to reality. As
Keitel (1993) reminds us, such an
approach does little to develop in
students the ability to decipher
the mathematics that is becoming
increasingly invisible in our
technologically mediated social
world.” Shouldn’t this, after all,
be the ultimate aim of mathemat-
ics education? ]
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Footnotes

'In my Ph.D. thesis (Zolkower, 1997),
I note that a group of recent immigrant
Spanish-speaking fourth-grade students,
developed—as a survival problem-solving
strategy in light of their difficulties in
reading English—the disposition to cut
through the noise when working on word
problems. even in those cases of word and
story problems designed with a
multicultural intent.

* Keitel (1993) notes the gap between
the growing objective importance of
mathematics in society and the decreasing
subjective importance of mathematics as it
is taught in school. As she forcefully argues,
while our technological and postindustrial
sociely becomes more mathematized,
citizens are becoming demathematized—
alienated from an understanding of the
means by which and the ways in which the
social world is increasingly coded and
managed by mathematics. Reminding us
that mathernatics education is one of those
rare opportunities (o experience and do
explicit mathematics and modeling, Keitel
cchoes Davis's call (1989) for a shift in
mathematics teaching from grammar to
literature—an emphasis on alternative
modeling activities that should lead to
analyzing and judging applied mathematics
critically.

Betina Zolkower is affiliated with the
Mathematics in the City project at the
City College of New York.



Using Pictures with Constraints to
Develop Multiplication Strategies

Judit Kerekes and Catherine Twomey Fosnot

Focusing on beginning
multiplication, Kerekes
and Fosnot discuss the
importance of
disequilibrium in
learning and show how
constraints facilitate
children’s mathematical
reconstruction and
growth.

Ithough constructivism is

a theory about how

children learn, rather
than a theory about how to teach,
an analysis of it does suggest
some principles of pedagogy that
can be helptul to educators. For
example, we know that strategies
for multiplication computation
are representative of the part/
whole relations (i.e., the big ideaus
[Schifter & Fosnot, 1993] that
learners have constructed) and
that they cannot be taught via
transmission because they require
inferring, i.e., logical-mathemati-
cal knowledge (Piaget &
Szeminska, 1952; Kamii, 1997).
In fact, teaching procedures or
algorithms with a pedagogy
based on transmission, practice,
and feedback strategies have been
shown to create place-value

errors and actually work against
the development of number
scnse. Children who have been
allowed to construct their own
strategies for computation may
make mistakes at times as well,
but their mistakes are computa-
tion errors rather than place-value
errors, and their answers are
representative of good number
sense (Kamii, 1998).
Constructivism also helps us
understand the developmental
nature of big ideas and recognize
the important role of disequilib-
rium in learning, which, accord-
ing to Piaget, arises from the
recognition that one’s strategy is
insufficient or from the puzzle-
ment when two ideas seem
contradictory (Piaget, 1977).
Teaching from this perspective,
then, becomes a case of facilitat-
ing disequilibrium rather than of
providing positive reinforcement.
In multiplication, children often
begin with inefficient strategies,
such as skip counting or repeated
addition. Only later do they
develop more efficient strategies,
such as doubling (e.g., calculating
4 x 8 by doubling 2 x 8 to get 16
+ 16 = 32) or using tens, employ-
ing the distributive property (e.g.,
calculating 12 x 13 by doing [10
x 13] 4 [2 x 13]). This develop-
ment of strategies has been
referred to in the literature as

progressive schematization
(Dolk, Uittenbogaard, & Fosnot,
1996; Treffers, 1987).

The resulting question for
educators is this: How best to
facilitate this progression?
Certainly, we need to use open-
ended investigations and prob-
lems that allow for many entry
levels and the learner’s own
construction of strategies. But we
also need to consider how to
stretch and challenge learners’
initial strategies in order to
facilitate the development of
higher-level strategies. We need a
safe, risk-supportive environ-
ment, but one in which learners
are invited to consider and
generate more efficient strategies
than their initial construction. We
need to support the development
of natural pseudoconcepts, but
work within the zone of proximal
development towards the devel-
opment of the scientific
(Vygotsky, 1986).

The Role of Context

Working within the paradigm
of Realistic Mathematics devel-
oped by the Freudenthal Institute
in the Netherlands, several
researchers have been looking at
the role of context in mathematics
teaching and learning.

Different contexts obviously
can suggest different models of
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multiplication. For example, the
problem I have 12 boxes of
pencils with 15 pencils in each
box; how many pencils in all?
suggests repeated addition,
whereas the problem A patio
made of tiles has 12 rows with 15
tiles in each; how many total
tiles? suggests an array or area
model, and the problem / have 12
blouses, 15 pants; how many
outfits? suggests a tree or branch-
ing model. Different contexts can
also challenge familiar strategies
or elicit new ones. For example,
asking children to figure out how
many plums the grocer has in the
box (see Figure 1) elicits most
often either counting by ones or a
repeated-addition strategy. In
contrast, calculating how much
the strawberries cost if they were
$4 a quart (see Figure 2) presents
nothing to be counted, and
because doubling occurs in the
picture, it is more likely that
children will employ either a
skip-counting strategy or a
doubling strategy. Of course.

children can use their fingers to
count the $4 by ones repeatedly if
they need to, so the safe environ-
ment with multiple entry levels is
there. But the context is likely to
stretch initial counters to give up
this inefficient scheme and
construct, instead, a multiplica-

the patio problem (see Figure 3).
How many tiles are in the patios?
Here, the chaise lounge and the
umbrella block some of the tiles,
Once again Imposing a constraint
to a counting strategy and possi-
bly engendering the use of the
distributive property.

Figure 2.

tion strategy based on repeated
addition or doubling. The fact
that the strawberry problem does
not provide objects to be counted
by ones is its constraint.

Another example of a picto-
rial context with a constraint is

It is our belief that such
constraints can be powerful
inducers of disequilibrium, while
maintaining a safe, risk-support-
ive, open environment. The
problems are open, yet the
constraints may facilitate devel-
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opment. As part of the work we
have been doing in Mathematics
in the City (a National Science
Foundation-funded collaborative
in-service project with the
Freudenthal Institute), we have
been using pictures with built-in
constraints to develop multiplica-
tion strategies and big ideas. Our
pictures come from curriculum
materials developed by the
Freudenthal Institute (van Galen,
Gravemeijer, Kraemer,
Meeuwisse, & Vermeulen, 1995).
They have been used previously
in Holland, but not in American
schools. The remainder of this
article will describe children’s
work in a third-grade classroom
in New York City as they began
to study multiplication.

Children’s Work

We began by asking the
children to figure out how many
pluins, lemons, apples, tomatoes,
etc., a grocer had on display.
Children were shown pictures of
different arrays of fruits in boxes,
similar to the plums in Figure 1,
and told a story about the grocer.
Except for two children who
knew the multiplication fact 6 x 9
= 54 and could use it in this
context (having probably learned
it at home), all the children
counted by ones. With smaller
arrays of lemons and tomatoes (3
x 3 or 4 x 3), some children used
skip counting. Here, the multiple
was easier to handle with skip
counting by fours or threes,
whereas the plums simply pro-
duced counting by ones.

The second series of pictures

we used depicted curtains and
window shades with designs (see
Figure 4). The children were told
a story of how the teacher awoke
from a dream and looked at her
bedroom windows, puzzled as to
how many designs were on the
shades and curtains. These
pictures have constraints. [n two
of the pictures, the shades are not
all the way down, so counting by
ones can only be done if one
counts the half-pulled shades
twice. With the curtains, one

wrote 3+3+3434+3+3+3+
3 =24), eleven used doubling
(they doubled 4 x 3), and four
responses could not be coded.
The teacher then facilitated a
discussion on how the eight rows
of three diamonds in the curtains
could be figured out by calculat-
ing four rows and doubling it.
She wrote the symbols to repre-
sent this idea in the following
way: 8x3=2x(4x3)=4x3)
+(4x3)=24.

The third picture that we

Figure 4.

curtain is purposefully puiled
aside. This series of pictures is
designed to promote doubling. Of
course, if children count by ones,
their strategy 1s accepted and
discussed, but the constraint is
likely to elicit the inefficiency of
this approach. That is, in fact,
what happened. With this series,
children did not count by ones:
five used skip counting (e.g., 3. 6,
9,12, 15, 18, 21, 24), two used
repeated addition (they actually

presented depicted a baker’s
dilemma. How many muffins
does he have? How many did he
have when all the trays were
filled? How many has he sold?
The muffins in the second and
third tray are related to the
amount in the first tray. Will
children notice this? Will they
construct the distributive prop-
erty, seeing that 9 x 4 =(5x4) +
(4 x4)?

Jennifer still counts by ones,
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ignoring the constraint (see
Figure 5). Tyler also ignores the
constraint, although he employs a
slightly more efficient strategy
than Jennifer (see Figure 6). He
figures out the middle tray by
skip counting by twos. However,
this seems inefficient to him, and
although he continues skip
counting, this time he does it by
tens. He makes a calculating error
and gets 75, but his unitizing is
solid, and one can see how he
rethinks his grouping strategy
towards greater efficiency. One
does wonder, though, whether he
thinks it is possible that both
answers could be correct, 72 and
75. Brooklyn, on the other hand,
begins by using repeated addition
(see Figure 7). She solves the
second and third trays by repeat-
edly adding fours, but when she
gets to the first tray, she shifts her
strategy to the distributive prop-
erty. She describes the relation-
ship between the trays and adds
the second and third together to
get the first. Other children also
make use of this strategy. Jacob’s
work, for example, shows a solid
understanding of the distributive
property (see Figure 8). He
writes, ““This one |the middle
tray] have 16 because the right
one have 20 if [ take away 4 it
willbe 16 [4 x4=(5x4)- 4].”
And he calculates the first tray
similarly: “There are 36. the last
one help me because I plus 20
more [to the 16 in the middle
tray} and I got 36.” Although the
picture is not designed to elicit
doubling and halving, some
children do use this strategy.
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Christina figures out that 4 x 4 =
2x8andthat5x4=8+8+4
(see Figure 9). She solves the first
tray by turning 9 x 4 into (4 x 4)
+(@4x4)y+4.

Each of these pictures gives
children the chance to construct
their own free production, but the
interesting issue for the educator
regarding the role of context is
whether children use their own
familiar constructions across
contexts, or whether they indeed
change their strategy, construct-
Ing a new one in response to the
constraints. In the baker problem,
where the constraint suggests the
distributive property, 8.7% (2 out
of 23) of the children counted by
ones, 13.0% (3 out of 23) em-
ployed skip counting, 13.0% (3
out of 23) utilized repeated
addition, and 8.7% (2 out of 23),
doubling and halving. Two
samples could not be coded
(8.7%). The remaining 11 chil-
dren (48%) used a form of the
distributive property and de-
scribed the relationships between
the trays. These responses are
remarkably different than the
range of strategies used for the
bedroom window dilemma, a
problem designed to elicit dou-
bling. Here, 5 out of 22 (23%)
used skip counting, and 2 out of
22 (9%) used repeated addition.
Once again, a few samples were
uncodable—4 out of 22 (18%).
But with this problem, no child
used the distributive property, and
50% (11 out of 22) used dou-
bling. Note. The total number of
children changed from 23 to 22
because one child was absent the
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day the curtain problem was
posed.

Discussion

If children indeed change
their strategies in relation to the
constraints in contexts, then
designing investigations with
such constraints in mind is a
powerful pedagogical tool for the
educator trying to elicit big ideas
or stretch children’s initial strate-
gies towards more efficient ones.
By keeping the problems open,
we invite children to solve them
at their own developmental level,
and we support their spontaneous,
natural constructions. The con-
straints within this open structure
though may serve as inducers to
reconstructing. They may encour-
age new strategies or provide
difficulties for initial strategies,
thereby facilitating disequilib-
rium. In this way, the constraints
stretch and challenge strategies
and enable progressive
schematization. They also bring
wonderful teaching moments to
the surface for further inquiry: for
example, exploring why the
distributive property works and
trying it out with larger numbers
such as 12 x 13, investigating the
different ways the numbers could
be broken up and the ways in
which the parts are connected to
the whole.

By working with children in
this fashion, we honor their initial
constructions, but we also make
the role of facilitator meaningful.
We encourage children to agree
and/or disagree with each other

THE CONSTRUCTIVIST

and to examine the efficiency and
elegance in each other’s strategy.
We stretch and challenge their
initial strategies and encourage
the development of higher-level
ones. This process honors their
thinking, but works with them in
their zone of proximal develop-
ment. 7J
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Number Strings: Developing
Computational Efficiency in a

Constructivist Classroom

Jennifer DiBrienza and Gary Shevell

Children develop
stronger number sense if
allowed to explore
strategies when
computing, instead of
being tied down to rigid
procedures, sich as
algorithms. Guided by
this belief, DiBrienza
and Shevell demonstrate
the powerful role of
number strings in
promoting
computational

efficiency.

ne of the main criticisms

and concerns parents and

administrators have
about constructivist mathematics
teaching is that children do not
learn to compute quickly and
accurately. Because of this
misperception, teachers are under
pressure to teach standard algo-
rithms. Much of Constance
Kamii’s work shows that this
approach is misguided and may,
in fact, be detrimental to
children’s understandings about
number (Kamii, 1998).

Children should be allowed to

come up with their own strategies

for computation. Yet in many
instances, the strategies that
children invent, while they make
sense to the student and may be
mathematically correct, are
cumbersome and inefficient.
What can teachers do to be sure
their students are developing a
repertoire of efficient computa-
tion strategies when working with
numbers? As educators, we must
provide opportunities for children
to hone and develop big ideas and
to strive for efficiency and
elegance in their strategies. One
such opportunity involves
mental-math activities using
number strings.

What Is a Number
String?

A number string is a series of
related but bare (devoid of
context) computation problems
that are specifically designed to
elicit quick, efficient, and reliable
strategies for computation from
students. The problems are
written horizontally, not verti-
cally. When problems are written
this way, they do not encourage
any one particular strategy.
Writing problems vertically, on
the other hand, inherently sug-
gests a place-value splitting
strategy.

Number strings give students
a chance to notice patterns and
hone their computational skills in
a constructivist way. The goal is
for children not to be bound to a
rigid procedure such as an algo-
rithm that is used regardless of
the problem, but rather, to look to
the numbers to decide which
strategy to use. After all, this is
what mathematicians do; they
look for and create elegant
solutions.

Take the following problem:

4,017 - 3.998.
When students solve this using
the traditional algorithm, they
must “borrow” a | from the tens
column because 8 1s larger than 7.
Next, they must “‘borrow™ a |
from the hundreds column;
however, that is not possible, so
they must change the 4 from the
thousands column into a 3, give
the extra thousand to the hun-
dreds column, change the hun-
dreds column froma 10 to a 9.
give the extra hundred to the tens
column and finally subtract each
column. Then—and only if the
student has done every step
correctly—will she have the
correct answer. Moreover, if she
made a mistake, the student has
no way to check except to repeat
the algorithm or perform an
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addition algorithm to check her
subtraction algorithm. There is no
use of number sense.

A child from a constructivist
classroom who has been allowed
to invent procedures might say,
“4,000 take away 3,000 is 1,000.
1,000 take away 900 is 100. 100
take away 90 is 10. 10 take away
8152, plus 17 is 19, so the answer
1s 19.” (See Figure 1.)

4.017
3,998
1000
_—_9()0
100

Figure 1.

The student first looked to the
numbers to decide which strategy
would work best and then pro-
ceeded. This child has some
number sense, but is this how we
want children to solve problems
like this?

A child from a constructivist
classroom who has consistently
worked with number strings
might use a constant-difference
strategy: add 2 to both numbers,
making the problem

4,019 —4,000.

This answer also is 19. This child
has exhibited true number sense.

THE CONSTRUCTIVIST

He did not jump right in and
perform an algorithm, whether
standard or invented. Nor did he
perform an invented strategy that
is inefficient for these numbers.
Rather, he first looked to the
numbers to decide which strategy
would work best and then pro-
ceeded. It is clear that this child
has some deep understandings
about subtraction. He is able to
treat the numbers as whole,
without breaking them into
unnecessary parts. Further, he
understands the value of land-
mark numbers and is capable of
using them to make this problem
friendlier. Finally, he understands
subtraction as difference and that
for these numbers, adding two to
each, maintaining the difference,
is a more efficient strategy for
subtracting than removing
numbers.

All of these ideas can be
explored using number strings.
Figure 2 is an example of a string
that is likely to elicit a constant-
difference strategy.

150 - 75
151 -76
149 — 74
294 — 100
291 -97
301 - 107
Figure 2.

Children see that the first three
answers are the same and then
investigate how they are related.
In the next three problems, the

situation repeats itself, giving
students an opportunity to ex-
plore further. Eventually, when
they understand the strategy. they
add it to their repertoire.

When doing a string with a
group of students, the teacher
places a single problem on the
board horizontally. The teacher
then gives the students think time
to mentally solve the problem and
prepare to verbalize what they
did. As children share their ideas,
the facilitator visually represents
what they say. Students hear and
see representations of their peers’
strategies, and they can discuss
the variety of approaches.

For example, the teacher may
write this problem on the board:

72 -125.

One student might say, “First [
took 2 away from the 72 to get to
70. Then I jumped back 10 to 60.
Then [ jumped back another 10 to
50. I'still had 3 more to take
away. 50 minus 3 1s47.” The
teacher may draw on the board:

3 10 10 2
AR AY
— >t —

47 50 60 70 72

Another student may add, “T did
it differently. I started at 72,
Jjumped back three 10s to 42, and
then added 5 back on, so the
answer 1s 47.” The teacher draws
on the board:

10 10 10
| PN
1 1 1 T
42 47 52 62 72
After a few different strategies

are shared, discussed, and clan-
fied, the next problem in the




string is introduced with the same
procedure. This process continues
throughout the string, while the
facilitator capitalizes on opportu-
nities to further student thinking.

To be effective, number
strings need to be explored on a
consistent basis. It takes time and
exploration to construct a deep
understanding of any one strat-
egy, and there are many strategies
worth exploring. In order for
students to truly look to the
numbers, they must explore all of
these strategies in conjunction
with one another. If they are only
able to explore certain big ideas,
the related strategies risk becom-
ing algorithms themselves.

Only by doing string work
regularly can students develop
efficiency in their computation.
However, number strings are not
a substitute for hands-on investi-
gation and exploration. Strings
can cause students to raise
questions around number, but
children will not construct the
mathematical big ideas embedded
in number strings unless these
properties of number are also
investigated in hands-on, child-
directed mathematical investiga-
tion.

Addition and
Subtraction Strings

The following are some of
the addition and subtraction big
ideas that our students have
constructed and explored through
string work.

* Keeping the first number whole
and adding or subtracting by
moving to the nearest 10 (or 100)

or making jumps of 10 (or 100)
Through various investigations
and games. students begin to
recognize the importance of 10 as
a landmark number. Figures 3
and 4 provide examples of strings
that can be explored in conjunc-
tion with this concept.
» Counting up to subtract
This 1s another important big 1dea
for subtraction. After students
discover, through context prob-
lems, games, and investigations,
that it 1s possible to count up
when subtracting, as well as to
count backwards, the teacher can
use strings to explore when it
might make more sense to count
up than to remove. Figure 5 1s an
example of a string that is de-
signed to explore this idea.
Children working on this
string might realize that for some
of these problems, counting up to
subtract is quite a task, while for
the others, it is rather easy. The
teacher can then facilitate a class
conversation around why certain
numbers beg for particular
strategies.

Multiplication and
Division Strings

The following are some of
the big ideas through which we
can investigate multiplication and
division.
* Doubling and halving
As students work with arrays to
explore multiplication, they begin
to discover that by rearranging
the array, the problem can be
changed, yielding the same
product. For example, if students
are presented with 3 1/2 x 14,

Moving to the Nearest 10
17+ 3 42 - 2
17+ 6 42 -7 I
27+ 3 62 -2 ‘|
27+ 16 62 — 27
57+ 3 72 -2 1
57+ 36 72 - 37

Figure 3.
Mal;i—ngi]umps of 10
27+ 10 33-10
37+ 10 53-10
47 + 20 53-20
47 + 24 53-24
56 + 30 83 -50
L56 + 35 83 -54
Figure 4.
101 — 97
101 — 6
|
153 — 145
153 — 14
513 — 489
513 -24
1,003 — 992
1,003 - 27
4,017 — 3,998
4,017 — 78
Figure 5.
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they can solve it by doubling the
3 1/2 and halving the 14, making
the problem 7 x 7 (see Figure 6).

With continued string work,
we see that the strategy can go
beyond doubling and halving, as
shown in Figure 7.

Here 1s a division example:

300/12.
[f both numbers are cut into
thirds, the problem becomes
100/4, as in Figure 8.

Figure 9 shows a division
string that might bring up this

strategy for investigation.
 Using landmark numbers and
using landmark numbers with
compensation

The distributive property of
multiplication is another big idea
around which we can explore

multiplication and division. For

} 1/2 3P1/3 31/2 _7 example, the arrays in Figure 10
' ‘ - B - show how the distributive prop-
| erty can be used for double-digit
7 multiplication.
L Figure 11 shows multiplica-
| tion and division strings that
14 ) ) explore this idea.
The Role of
: | Conversation
| \ b= Student interaction and
conversation around the strategies
1 they use are crucial aspects of
string work. During conversation,
) students are held accountable to
Figure 6. ) > try to make sense of each other’s
- _(2) ~ strategies and defend their own.
Accountable talk seriously re-
| sponds to and further develops
12 300 what others in the group have said
(Institute for Learmning, LRDC,
|
| . . e
‘ 3x6 l 16/ 4
] .
3% 12 32/4
6 x 12 (25) 6478 |
| - -
3x24 .
4 100 32/8
Ixs I 32/ 16
624 4| 100
12 x 12 = = 64/ 16
4 x 36 4 100 | 128/32
2x 18 L Figure 9.
Figure 7. Figure &,
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playing with numbers and search-

13 10 3 : :
e ing for elegant solutions. 7J
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1997). By sharing their strategies,
students are afforded opportuni-
ties to further their own under-
standings. String conversations
may also provide opportunities to
try other strategies, to explore
why an approach works, and to
debate about efficiency.

the start of math workshop. Also,
whenever a teacher has 15
minutes, she can use a number
string. Morning meetings and/or
transitions are excellent opportu-
nities as well.

The more students work with
strings, the more efficient their
strategies will be. Children who
are given opportunities to explore
and construct strategies will
derive aesthetic pleasure in
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Highlights from the 1999 ACT Annual...

Keynote Speakers:

Karen Guallas

Participants enjoy two days
of sharing, learning, and
networking...
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...Conference in St. Louis
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October 19-20, 2000
W Atlanta at Perimeter Center
Atlanta, Georgia

The Board of Directors of the Association for Constructivist Teaching is pleased to
announce that the 2000 conference will be held at the W Atlanta at Perimeter Center in
Atlanta, Georgia, on October 19 and 20, 2000. Please note the call for proposals below.

CALL FOR PROPOSALS
APPLICATIONS OF CONSTRUCTIVISM FOR ALL LEARNERS

The Association invites proposals for workshops (1 1/2 hours in length) for the 2000 conference. We
seek presentations regarding applications of Piaget’s theory of constructivism to both general and
special-needs populations. We also welcome research papers and symposia regarding implications of
constructivist theory for educational practice.

Please write a descriptive statement of your session’s purposes, activities, and intended audience.
Limit your proposal to three pages, and attach it to the presenter information form. Include a brief
overview of your current position and previous experience in education. Send your proposal to

Linda Kroll
Associate Professor, Department of Education
Mills College
5000 MacArthur Blvd.
Oakland, CA 94613-1301

For more information, contact Linda by phone at (510) 430-3161.

Proposals must be postmarked by May 20, 2000.
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Session Title

A;CT Annual Conferen;te 2000*

Presenter Information and Audio-Visual Request Form

Please include information for all copresenters.

Presenter:

Name

Copresenter:

Name

Title & Affiliation
Address

Title & Affiliation
Address

City, State, Zip

City, State, Zip

Home Phone

Home Phone

Work Phone

Work Phone

E-mail

E-mail

Summer Address

Summer Address

City, State, Zip

Summer Phone

City, State, Zip

Summer IPhone

Copresenter:

Name

I need the following audio-visual equipment:

Title & Affiliation
Address

please check appropriate boxes

0 Overhead Projector & Screen

0 Slide Projector & Screen
0 VCR/Monitor

City, State, Zip

Home Phone

Q Other
1 None

Work Phone

E-mail

Summer Address

City, State, Zip

[ Summer Phone

Please list any additional copresenters on a separate sheet.
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Classified Ads

Have a job opening that you want to announce in The
Constructivist? Send copy, with contact information, to
Sukanya Dutta-White, Project Construct National
Center, 27 S. Tenth Street, Suite 202, Columbia,

MO 65201-5009; Phone: (800) 335-PCNC;
E-mail: sukanya@projectconstruct.org

Advertisements

To advertise in The Constructivist or to get rate information,
contact Sukanya Dutta-White at the Project Construct National
Center, 27 S. Tenth Street, Suite 202, Columbia, MO 65201-5009:;
Phone: (800) 335-PCNC; E-mail: sukanya@projectconstruct.org
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ACT is the...
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Constructivist teaching provides a rich, problem-solving
arena that encourages the learner’s investigation, inven-
tion, and inference. The constructivist teacher values
learner reflection, cognitive conflict, and peer interaction.
ACT is a professional educational organization dedicated
to fostering teacher development based on these prin-
ciples.

Our Mission ...

Is to enhance the growth of all educators and students
through identification and dissemination of effective
constructivist practices in both the professional cultures of
teachers and the learning environments of children.

Membership ...

Is open to anyone interested in the field of education
including classroom teachers, administrators, supervi-
sors, consultants, college and university personnel,
students, and retired educators. Dues are $30 per year
regular and $20 per year for students and retirees; the
membership period runs from January through Decem-
ber.

ACT Goals

1. To provide increased and varied resources to an
expanding membership.

2. To increase attendance at and participation in ACT's
annual conference.

SSOCIATION for |, '§ ONSTRUCTIVIST ' EACHING
\-:_\_y,/ .

/

~J

3. To publish effective and practical strategies for
applying constructivism in the classroom through
ACT’s scholarly magazine, The Constructivist.

4. To provide a network through which teachers,
researchers, speakers, and other professionals can
support and extend each other’s efforts to inte-
grate Piaget’s theory of learning into their class-
room and within the context of federal, state, or
local mandates.

5. To encourage members to contribute actively to
the association’s development and engage others
in expanding the network of those who are willing
to support each other’s growth as constructivists.

Benefits of Membership

e THE CONSTRUCTIVIST ... ascholarly magazine,
published three times a year.

¢ ANNUAL CONFERENCE . .. discounted registra-
tion fee and early notice of call for presenters.

. AFFILIATION . .. with an association committed
to supporting you. ‘

Visit Our Web Site

http://www.users.interport.net/~roots/ ACT hitml

Name:

() Business Address:

City: State: _ Zip:
() Business Phone: ( ).

E-Mail Address:

Annual* Dues: January-December
$30.00 [Regular]
$20.00 [Students & Retirees]

The Association for Constructivist Teaching
Membership Application

New

Renewal

() Home Address:

() Home Phone: ( )

_ State: _ Zip:

Please check the address and phone to which we should address our contacts.

Please make your check payable to the Association for Constructivist Teaching,
¢/ o Brenda Fyte, School of Education, Webster University, 470 East Lockwood
Avenue, St. Louis, MO 63119-3194
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Don’t miss the ACT Annual Conference on
October 19 and 20 in Atlanta, Georgia!

Traditionally described as the Gateway to the South, Atlanta is a bustling city
with many attractions. For an introduction to all the city has to offer, visit the
Atlanta Convention and Visitors Bureau home page at http:/ /www.acvb.com.
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Project Construct National Center
27 South Tenth Street, Suite 202
Columbia, Missouri 65201-5009

Alice P. Wakefield

Old Dominion University
Child Study Center
Norfolk VA 23529

BULK RATE
U.S. POSTAGE
PAID

COLUMBIA, MO.

PERMIT NO. 31

LSIALLDIIRLLSNOD HHI

IDWWNG

K866 |

SUIM|OA

£l

pquny ¢

[




